

$\overline{DPP} - 5$

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/59

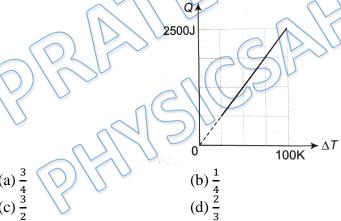
Video Solution on YouTube:-

https://youtu.be/9QIuCjSEkH4

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/33

- Two moles of helium are mixed with n moles of hydrogen. If $\frac{C_p}{C_n} = \frac{3}{2}$ for the mixture, Q 1. then the value of n is:
 - (a) 1


(b) 2

(c)3

- (d) 3/2
- Five moles of helium are mixed with two moles of hydrogen to form a mixture. Take Q 2. molar mass of helium $M_1 = 4g$ and that of hydrogen $M_2 = 2g$. The equivalent of γ is:
 - (a) 1.49

(c) 1.56

- (b) 1.63 (d) None
- One mole of a gas mixture is heated under constant pressure, and heat required Q is Q 3. plotted against temperature difference acquired. Find the value of γ for mixture

- Q 4. When 1 mole of monoatomic gas is mixed with 2 moles of diatomic gas, then find C_p , C_{ν} , f and γ for the resulting mixture (symbols have their usual meaning)
 - (a) $\frac{19}{6}R$, $\frac{13}{6}R$, $\frac{13}{3}$, $\frac{19}{13}$ (c) $\frac{19}{3}R$, $\frac{13}{3}R$, $\frac{13}{3}$, $\frac{19}{13}$

- (b) $\frac{13}{6}R$, $\frac{19}{6}R$, $\frac{19}{3}$, $\frac{13}{19}$ (d) $\frac{19}{6}R$, $\frac{13}{6}R$, $\frac{13}{6}$, $\frac{19}{12}$
- Q 5. The molar heat capacity of a gas at constant volume is C_v . If n moles of the gas undergo ΔT change in temperature, its internal energy will change by $nC_{\nu}\Delta T$
 - (a) only if the change of temperature occurs at constant volume
 - (b) only if the change of temperature occurs at constant pressure

hysicsaholics

- (c) in any process which is not adiabatic
- (d) in any process
- When one mole of monatomic gas is mixed with one mole of a diatomic gas, then the Q 6. equivalent value of γ for the mixture will be (vibration mode neglected)
 - (a) 1.33

(b) 1.40

(c) 1.50

- (d) 1.60
- The ratio $\frac{c_p}{c_n} = \gamma$ for a gas. Its molar mass is M. Its specific heat capacity at constant

- (b) $\frac{\gamma R}{\gamma 1}$ (d) $\frac{\gamma RM}{\gamma 1}$
- Each molecule of a gas has f degrees of freedom. The ratio $\frac{c_p}{c} = \gamma$ for the gas is Q 8.
 - (a) $1 + \frac{f}{2}$

(c) $1 + \frac{2}{f}$

- A mixture of n_1 moles of mono atomic gas and n_2 moles of diatomic gas has Q9.

$$\gamma = 1.5$$

(a) $n_1 = n_2$

(c) $n_1 = 2n_2$

- Q 10. Find the specific heat capacity c_v (in J/gm-K) for a gaseous mixture consisting of 7.0 g of nitrogen and 20 g of argon. The gases are assumed to be ideal
 - (a) 0.22

(b) 15.2

(c) 0.42

- (d) 23.55
- Q 11. One mole of an ideal gas whose adiabatic exponent equals γ undergoes a process P = $P_o + \frac{\alpha}{V}$, where P_o and α are positive constants. Find molar heat capacity of the gas as a
 - function of its volume
 (a) $\frac{\gamma R}{\gamma 1} + \frac{\alpha V}{P_0 R}$

 $(c)\frac{\gamma R}{\gamma-1}+\frac{\alpha R}{P_{c}V}$

(b) $\frac{R}{\gamma - 1} + \frac{R}{P_0 V}$ (d) $\frac{(\gamma - 1)R}{\gamma} + \frac{VR}{P_0 \alpha}$

Answer Key

Q.1 b	Q.2 c	Q.3 c	Q.4 a	Q.5 d
Q.6 c	Q.7 c	Q.8 c	Q.9 a	Q.10 c
Q.11 c			,	,

